Incremental Concept Learning for

نویسندگان

  • Sanjay Jain
  • Thomas Zeugmann
چکیده

Important reenements of concept learning in the limit from positive data considerably restricting the accessibility of input data are studied. Let c be any concept; every innnite sequence of elements exhausting c is called positive presentation of c. In all learning models considered the learning machine computes a sequence of hypotheses about the target concept from a positive presentation of it. With iterative learning, the learning machine, in making a conjecture, has access to its previous conjecture and the latest data item coming in. In k-bounded example-memory inference (k is a priori xed) the learner is allowed to access, in making a conjecture, its previous hypothesis, its memory of up to k data items it has already seen, and the next element coming in. In the case of k-feedback identiication, the learning machine, in making a conjecture, has access to its previous conjecture, the latest data item coming in, and, on the basis of this information, it can compute k items and query the database of previous data to nd out, for each of the k items, whether or not it is in the database (k is again a priori xed). In all cases, the sequence of conjectures has to converge to a hypothesis correctly describing the target concept. Our results are manyfold. An innnite hierarchy of more and more powerful feedback learners in dependence on the number k of queries allowed to be asked is established. However, the hierarchy collapses to 1-feedback inference if only indexed families of inn-nite concepts are considered, and moreover, its learning power is then equal to learning in the limit. But it remains innnite for concept classes of only innnite r.e. concepts. Both k-feedback inference and k-bounded example-memory identiication are more powerful than iterative learning but incomparable to one another. Furthermore, there are cases where redundancy in the hypothesis space is shown to be a resource increasing the learning power of iterative learners. Finally, the union of at most k pattern languages is shown to be iteratively inferable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System

In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...

متن کامل

Types of Incremental Learning

This paper is intended to introduce a closer look at incremental learning by developing the two concepts of informationally incremental learning and operationally incremental learning. These concept are applied to the problem of learning containment decision lists for demonstrating its relevance.

متن کامل

Weighing Hypotheses: Incremental Learning from Noisy Data

Incremental learning from noisy data presents dual challenges: that of evaluating multiple hypotheses incrementally and that of distinguishing errors due to noise from errors due to faulty hypotheses. This problem is critical in such areas of machine learning as concept learning, inductive programming, and sequence prediction. I develop a general, quantitative method for weighing the merits of ...

متن کامل

Measuring Concept Changes

In this paper we present a general approach to learning in domains in which concepts change over time. We introduce a new metric, concept instability, that detects whether a concept is changing by examining changes in the concept representation formed by a supervised incremental learning algorithm. When a change is detected, we form the hypothesis that the change is due to a shift in the underl...

متن کامل

Using genetic algorithms for supervised concept learning

Genetic Algorithms (GAs) have traditionally been used for non-symbolic learning tasks. In this paper we consider me application of a GA to a symbolic learning task, supervised concept learning from examples. A GA concept learner (GABL) is imple­ mented ahat learns a concept from a set of positive and negative examples. GABL is run in a batch­ incremental mode to facilitate comparison with an in...

متن کامل

Detecting Concept Drift in Data Stream Using Semi-Supervised Classification

Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999